US05CCHE22 (SEM-V)

Unit-2: CRYSTAL FIELD THEORY

Calculation of CFSE from d⁰ to d¹⁰

Dr. Trupti Darji

The CFSE value for each d^x ion (x = 0 to 10) having $t_{2g}^{p}e_{g}^{q}$ configuration p + q = x) for <u>octahedral complex</u> has been calculated as shown below:

1. d⁰ ion

 $t^{p}_{2g}e^{q}_{g} \text{ configuration of } d^{0} \text{ ion } = t^{0}_{2g}e^{0}_{g} \text{ (p=0, q=0, n=0, S=0, m=0)}$ $\therefore \text{ CFSE for } d^{0} \text{ ion } = (-0.4 \text{ x p} + 0.6 \text{ x q})\Delta_{0} + \text{mP}$ $= (-0.4 \text{ x } 0 + 0.6 \text{ x } 0)\Delta_{0} + 0 \text{ x P}$ = Zero

2. d¹ ion

t^p_{2g}e^q_g configuration of d¹ ion = t¹_{2g}e⁰_g (p=1, q=0, n=1, S=1/2, m=0) ∴ CFSE for d¹ ion = (-0.4 x p + 0.6 x q)Δ₀ + m x p = (-0.4 x 1 + 0.6 x 0)Δ₀ + 0 x p = - 0.4 Δ₀ = - 0.4 x 10 Dq (as Δ₀ = 10 Dq) = - 4.0 Dq

3. d² ion

t^p_{2g}e^q_g configuration of d² ion = t²_{2g}e⁰_g (p=2, q=0, n=2, S=2/2, m=0) ∴ CFSE for d² ion = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 2 + 0.6 x 0)Δ₀ + 0 x P = -0.8 Δ₀ = -0.8 x 10Dq = -8 Dq Note: The actual value of CFSE of d² metal ion in octahedral field environ ment is 6Dq which has been obtained by considering the

effects of d-orbitals splitting and interelectronic repulsion amongst d-electrons. If the effects of d-orbitals splitting alone is considered

and the effects of inter electronic repulsion amongst d electrons is ignored, then the value of CFSE for d^2 ion is 8Dq as shown above.

4. d³ ion

 $t_{2q}^{p}e_{q}^{q}$ configuration of d³ ion = $t_{2q}^{3}e_{q}^{0}$ (p=3, q=0, n=3, S=3/2, m=0) : CFSE for d² ion = (-0.4 x p + 0.6 x q) Δ_0 + mP $= (-0.4 \times 3 + 0.6 \times 0)\Delta_0 + 0 \times P$ $= -1.2 \Delta_{0}$ = -1.2 x 10 Da = - 12 Dg 5. d⁴ ion in HS state (weak ligands) $t_{2g}^{p}e_{g}^{q}$ configuration of d⁴ ion = $t_{2g}^{3}e_{g}^{1}$ (p=3, q=1, n=4, S=4/2, m=0) \therefore CFSE for d⁴ ion in HS state = (-0.4 x p + 0.6 x q) Δ_0 + mP $= (-0.4 \times 3 + 0.6 \times 1)\Delta_0 + 0 \times P$ $= -0.6 \Delta_{0}$ = -0.6 x 10 Dg = - 6.0 Dq 6. d⁴ ion in LS state (strong ligands) $t^{p}_{2a}e^{q}_{a}$ configuration of d⁴ ion in LS state ($\Delta_{0} > P$) = t⁴_{2q}e⁰_q (p=4, q=0, n=2, S=2/2, m=1) : CFSE for d⁴ ion in LS state = $(-0.4 \text{ x p} + 0.6 \text{ x q})\Delta_0 + \text{mP}$ $= (-0.4 \times 4 + 0.6 \times 0)\Delta_0 + 1 \times P$ = - 1.6 Δ₀ + P = -1.6 x 10 Dg + P = - 16 Dq + P 7. d⁵ ion in HS state (weak ligands) $t_{2g}^{p}e_{g}^{q}$ configuration of d⁵ ion in HS state (Δ_{0} < P) = t³_{2g}e²_g (p=3, q=2, n=5, S=5/2, m=0) \therefore CFSE for d⁵ ion in HS state = (-0.4 x p + 0.6 x q) Δ_0 + mP $= (-0.4 \times 3 + 0.6 \times 2)\Delta_0 + 0 \times P$ = Zero 8. d⁵ ion in LS state (strong ligands) $t_{2a}^{p}e_{a}^{q}$ configuration of d⁵ ion in LS state ($\Delta_{0} > P$) $= t_{2a}^{5} e_{a}^{0}$ (p=5, q=0, n=1, S=1/2, m=2)

: CFSE for d⁵ ion in LS state = $(-0.4 \text{ x p} + 0.6 \text{ x q})\Delta_0 + \text{mP}$ = $(-0.4 \text{ x 5} + 0.6 \text{ x 0})\Delta_0 + 2 \text{ x P}$ = - 2.0 Δ₀ + 2P
= -2 x 10 Dq + P
= - 20 Dq + P

9. d⁶ ion in HS state (weak ligands)

t^p_{2g}e^q_g configuration of d⁵ ion in HS state (Δ₀ < P) = t⁴_{2g}e²_g (p=4, q=2, n=4, S=4/2, m=1) ∴ CFSE for d⁶ ion in HS state = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 4 + 0.6 x 2)Δ₀ + 1 x P = -0.4 Δ₀ + P = -0.4 x 10 Dq + P = -4 Dq + P 10. d⁶ ion in LS state (strong ligands) t^p_{2g}e^q_g configuration of d⁶ ion in LS state (Δ₀ > P) = t⁶_{2g}e⁰_g (p=6, q=0, n=0, S=0, m=3) ∴ CFSE for d⁶ ion in HS state = (-0.4 x p + 0.6 x q)Δ₀ + mP

 $= (-0.4 \times 6 + 0.6 \times 0)\Delta_0 + 3 \times P$

 $= -2.4 \Delta_0 + 3P$

= -2.4 x 10 Dq + 3P

= - 24 Dq + 3P

11. d⁷ ion in HS state (weak ligands)

t^p_{2g}e^q_g configuration of d⁷ ion in HS state (Δ₀ < P) = t⁵_{2g}e²_g (p=5, q=2, n=4, S=3/2, m=2) ∴ CFSE for d⁷ ion in HS state = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 5 + 0.6 x 2)Δ₀ + 2 x P = - 0.8 Δ₀ + 2P = -0.8 x 10 Dq + 2P = - 8 Dq + 2P

Note: The actual value of CFSE of d^7 metal ion in weak octahedral ligand field environment is (-6Dq + 2P) which has been obtained by considering the effect of d-orbitals splitting and inter electronic repulsion amongst d electronic. If the effect of d-orbitals splitting alone is considered and the effects of interelectronic repulsion amongst d electrons is ignored, then the value of CFSE for d^7 ion (HS) is (-8Dq +2P) as shown above.

12. d⁷ ion in LS state (strong ligands)

 $t^{p}_{2g}e^{q}_{g} \text{ configuration of } d^{7} \text{ ion in LS state } (Δ_{0} > P)$ $= t^{6}_{2g}e^{1}_{g} (p=6, q=1, n=1, S=1/2, m=3)$ ∴ CFSE for d⁷ ion in LS state = (-0.4 x p + 0.6 x q)Δ_{0} + mP = (-0.4 x 6 + 0.6 x 1)Δ_{0} + 3 x P = -1.8 Δ_{0} + 3P = -1.8 x 10 Dq + 3P = -18 Dq + 3P

13. d⁸

 $t^{p}_{2g}e^{q}_{g}$ configuration of d⁸ ion = $t^{6}_{2g}e^{2}_{g}$ (p=6, q=2, n=2, S=2/2, m=3) ∴ CFSE for d² ion = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 6 + 0.6 x 2)Δ₀ + 3 x P = -1.2 Δ₀ + 3P = -1.2 x 10Dq + 3P = -12 Dq + 3P

14. d⁹

 $t^{p}_{2g}e^{q}_{g}$ configuration of d⁹ ion = $t^{6}_{2g}e^{3}_{g}$ (p=6, q=3, n=1, S=1/2, m=4) ∴ CFSE for d⁹ ion = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 6 + 0.6 x 3)Δ₀ + 4 x P = - 0.6 Δ₀ + 4P = -0.6 x 10Dq + 4P = - 6 Dq + 4P

15. d¹⁰

 $t^{p}_{2g}e^{q}_{g}$ configuration of d¹⁰ ion = $t^{6}_{2g}e^{4}_{g}$ (p=6, q=4, n=0, S=0, m=5) ∴ CFSE for d⁹ ion = (-0.4 x p + 0.6 x q)Δ₀ + mP = (-0.4 x 6 + 0.6 x 4)Δ₀ + 5 x P = 0 + 5P = 5P

The CFSE value for each d^x ion (x = 0 to 10) having $t_{2g}^{p}e_{g}^{q}$ configuration p + q = x) for <u>tetrahedral complex</u> has been calculated as shown below:

1. d⁰ ion

 $e^{p}t^{q}_{2}$ configuration of d^{0} ion = $e^{0}t^{0}_{2}$ (p=0, q=0,)

: CFSE for d⁰ ion =
$$(-0.6 \times p + 0.4 \times q)\Delta_t$$

= $(-0.6 \times 0 + 0.4 \times 0)\Delta_t$
= Zero

2. d¹ **ion**

 $e^{p} t^{q}_{2}$ configuration of d¹ ion = e¹ t⁰_{2} (p=1, q=0,) ∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t = (-0.6 x 1 + 0.4 x 0)Δ_t = - 0.6 Δ_t = - 0.6 x 0.45 Δ₀ = - 0.270 Δ₀ = - 0.270 x 10Dq = -2.7Dq

3. d² **ion**

$$e^{p} t^{q} configuration of d^{2} ion = e^{2} t^{0} (p=2, q=0,)$$
∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t
= (-0.6 x 2 + 0.4 x 0)Δ_t
= -1.2 Δ_t
= -1.2 x 0.45 Δ₀
= -0.270 Δ₀
= -0.540 x 10Dq
= -5.4Dq

4. d³ **ion**

e^p t^q₂ configuration of d³ ion = e² t¹₂ (p=2, q=1,) ∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t = (-0.6 x 2 + 0.4 x 1)Δ_t = - 0.8 Δ_t = - 0.8 x 0.45 Δ₀ = - 0.36 Δ₀ = - 0.36 x 10Dq = - 3.6Dq

5. d⁴ ion

 $e^{p} t^{q}_{2}$ configuration of d⁴ ion = $e^{2} t^{2}_{2}$ (p=2, q=2,) \therefore CFSE for d⁰ ion = (-0.6 x p + 0.4 x q) Δ_{t} = (-0.6 x 2 + 0.4 x 2) Δ_{t} = - 0.4 Δ_{t} = - 0.4 x 0.45 Δ₀ = - 0.18 Δ₀ = - 0.18 x 10Dq = - 1.8Dg

6. d⁵ ion

$$e^{p} t^{q}_{2}$$
 configuration of d⁵ ion = $e^{2} t^{3}_{2}$ (p=2, q=3,)
 \therefore CFSE for d⁰ ion = (-0.6 x p + 0.4 x q) Δ_{t}
= (-0.6 x 2 + 0.4 x 3) Δ_{t}
= 0 x Δ_{t}
= Zero

7. d⁶ ion

e^p t^q₂ configuration of d⁶ ion = e³ t³₂ (p=3, q=3,) ∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t = (-0.6 x 3 + 0.4 x 3)Δ_t = - 0.6 Δ_t = - 0.6 x 0.45 Δ₀ = - 0.27 Δ₀ = - 0.27 x 10Dq = - 2.7Dq

8. d⁷ ion

 $e^{p} t^{q}_{2}$ configuration of d⁷ ion = e⁴ t³₂ (p=4, q=3,) ∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t = (-0.6 x 4 + 0.4 x 3)Δ_t = - 1.2 Δ_t = - 1.2 x 0.45 Δ₀ = - 0.54 x 10Dq = - 5.4Dg

9. d⁸ ion

 $e^{p} t^{q}_{2}$ configuration of d^{8} ion = $e^{4} t^{4}_{2}$ (p=4, q=4,) \therefore CFSE for d^{0} ion = (-0.6 x p + 0.4 x q) Δ_{t} = (-0.6 x 4 + 0.4 x 4) Δ_{t} = - 0.8 Δ_{t} = - 0.8 x 0.45 Δ_{0} = - 0.36 Δ_{0}

10. d⁹ ion

 $e^{p} t^{q}_{2}$ configuration of d⁹ ion = e⁴ t⁴_{2} (p=4, q=5,) ∴ CFSE for d⁰ ion = (-0.6 x p + 0.4 x q)Δ_t = (-0.6 x 4 + 0.4 x 5)Δ_t = - 0.4 Δ_t = - 0.4 x 0.45 Δ₀ = - 0.18 Δ₀ = - 0.18 x 10Dq = - 1.8Dq

11. d¹⁰ ion

 $\begin{array}{l} e^{p} t^{q}{}_{2} \mbox{ configuration of } d^{10} \mbox{ ion } = e^{4} t^{6}{}_{2} \mbox{ (p=4, q=6,)} \\ \therefore \mbox{ CFSE for } d^{0} \mbox{ ion } = (-0.6 \ x \ p + 0.4 \ x \ q) \Delta_{t} \\ &= (-0.6 \ x \ 4 + 0.4 \ x \ 6) \Delta_{t} \\ &= \mathbf{0} \ x \ \Delta_{t} \\ &= \mathbf{Zero} \end{array}$

Molecular Orbital Theory

In molecular orbital theory of complexes the AOs of central metal ions and ligands combine to form σ or π MO orbitals. These sets of MO have an equal number of bonding (lower energy level) and antibonding (higher energy level) orbitals. The non-participating AO of central metal ions is called a nonbonding MO and their energy remains unchanged.

Steps involved in σ MO in octahedral complex :

- Selection of the metal ion orbitals which are to overlap with ligand pσ molecular orbitals.
- To determine the ligand p_σ orbital which may overlap with suitable metal ion orbitals to give σ MO orbitals.
- In this final step combination of metal ion orbitals and ligands orbitals of same symmetry overlap with each other and form *σ*-bonding molecular orbitals (s-BMO) and *σ*-antibonding molecular orbitals (*s-ABMO).

(a) - Octahedral complexes in which the central metal atom (M) is surrounded octahedrally by 6 ligands.
(b) - Field p_s orbitals on 6 ligands.

Discussion of the above steps in detail.

1. To make a selection of metal ion orbitals suitable for s-bonding :

Valence shell of 1st transition series metal ions has nine orbitals (one 4s, three 4p and five 3d). From these orbitals lobes of 4s, 4px, 4py, 4pz. $3d_{z2}$ and $3d_{x2-y2}$ have their lobes along the axes, and $3d_{xy}$, $3d_{yz}$ and $3d_{xz}$ orbitals have their lobes in between the axes. Therefore $3d_{xy}$, $3d_{yz}$ and $3d_{xz}$ orbitals are not capable of forming s-bonds.Since out of nine only six AOs are suitable to overlap with ligand orbitals to form σ -BMO and σ^* ABMO.

According to group theory, the metal ion orbitals are designated by the following symmetry symbol:

Orbitals	Symmetry symbol	
4s	a _{1g} or A _{1g} (single, gerade, symmetrical,non-degenerate)	
4p _x , 4p _y , 4p _z	t_{1u} or T_{1u} (three, ungerade, degenerate)	
3d _{z2} , 3d _{x2-y2}	e_{g} or E_{g} (two, gerade, degenerate)	
3d _{xy} , 3d _{yz} , 3d _{xz}	t_{2g} or T_{2g} (three, gerade, degenerate)	

2. To determine the ligand $p\sigma$ orbital combinations :

The six ligands p_{σ} orbitals viz. σ_x , σ_{-x} , σ_y , σ_{-y} , σ_z and σ_{-z} combine together linearly to form six ligand $p\sigma$ orbital combination, designated as $\Sigma_s \Sigma_x$, $\Sigma y_{,} \Sigma_z$, Σ_{z2} and Σ_{x2-y2} have been shown in the figure:

Fig: Six ligand p_{σ} orbital combination

Dr. Trupti Darji, V.P. and R.P.T.P. Science College

3. Formation of sigma (*σ*) molecular orbitals (MOs) in octahedral complexes :

Condition for effective combination for formation of MO

- The combining orbitals should have the same symmetry for the maximum overlap.
- The combining orbitals should not have large differences in their energies.
- In octahedral complexes, sigma MO are formed by the overlap of six ligand $p_{\sigma}(\Sigma_s)$ orbital with the six metal ion σ -orbitals($a_{1\sigma}$) along the axes.

Fig: Formation of a_{1g} BMO (σ_s) and a_{1g}^* ABMO (σ_s^*) in an octahedral complex

The three 4p(p_x, p_y, p_z) orbitals of metal ion(t_{1u}) and three ligand pσ-orbitals(Σ_x, Σ_y, Σ_z,) combine to form three t_{1u} BMOs(σ_p) and three t_{1u}*ABMO(σ_p*).

Fig: Formation of three t_{1u} BMO (σ_p) and three t_{1u}^* ABMOs (σ_p^*)

• Metal ion $3d_{x2}$ and $3d_{x2-y2}$ orbitals and two ligand $p\sigma(\Sigma_{x2-y2}, \Sigma_{z2})$ orbitals combine to form two degenerate $e_g BMO(\sigma_d)$ and two $e_g^*ABMO(\sigma_d^*)$.

Fig: Formation of two e_g BMOs (σ_d) and two e_g^* ABMOs (σ_d^*)

The formation of different MOs can be shown in the following simple way:

Six metal ion AOs $(1+3+2=6)$	Six ligand p_{σ} orbital combi- nations $(1 + 3 + 2 = 6)$	Six σ -BMOs $(1 + 3 + 2 = 6)$	$Six \sigma^*ABMOs (1+3+2=6)$
$4s(a_{1g})(1)$	$\Sigma_{\rm s}\left({\rm a_{1g}}\right)\left(1 ight)$	$\sigma_{s}\left(a_{1g} ight)\left(1 ight)$	$\sigma_{s}^{*}(a_{1g}^{*})(1)$
$4p_x, 4p_y, 4p_z(t_{1\mu})(3)$	$\Sigma_{\rm x}, \Sigma_{\rm y}, \Sigma_{\rm z} ({\rm t}_{1\mu})(3)$	$ \begin{array}{c} \sigma_{x}, \sigma_{y}, \sigma_{z} \\ (t_{1\mu} \text{ or } \sigma_{p}) (3) \end{array} $	$\sigma_x^*, \sigma_y^*, \sigma_z^*, (t_{1\mu}^* \text{ or } \sigma_p^*) (3)$
$3d_{z^{2}}, 3d_{x^{2}-y^{2}}(e_{g})(2)$	$\Sigma_{z^2}, \Sigma_{x^2-y^2} (e_g)(2)$	$ \begin{array}{l} \sigma_{z^2}, \sigma_{x^2 - y^2}, \\ (e_g or \sigma_d) (2) \end{array} $	$\sigma_{z^2}^*, \sigma_{x^2-y^2}^{*2}, (e_g^* \text{ or } \sigma_d^*)(2)$

Energy level diagram of [Co(NH₃)₆]³⁺ ion

In $[Co(NH_3)_6]^{3+}$ ion, Co is present as Co^{+3} ($3d^6 4s^0 4p^0$). This complex ion has 12 electrons from six NH_3 ligands and 6 electrons from d-orbitals of Co^{+3} ion. The distribution of 18 electrons accommodates in various orbitals can be written as :

 $(a_{1g})^2 (t_{1u})^6 (e_g)^4 (t_{2g})^6 = (BMOs)^{12} (t_{2g})^6$ = $(BMOs)^{12} (3d_{xy})^2 (3d_{yz})^2 (3d_{xz})^2$

Fig: Molecular energy level diagram of [Co(NH₃)₆]³⁺

Important point from the figure:

- All the electrons present in various BMOs and t_{2g} orbitals are in the paired state (n=0). Hence [Co(NH₃)₆]³⁺ ion is diamagnetic.
- Since n = 0, S = 0
- [Co(NH₃)₆]⁺³ ion is coloured, since the promotion of electrons from non-bonding t_{2g} orbitals to e_g^{*}ABMOs is feasible.
- The energy gap (Δ₀) between t_{2g} orbitals and e_g*ABMOs is 23,000 cm⁻¹, is larger than pairing energy (= 19,000 cm⁻¹), the six electrons of Co⁺³ ion are paired in t_{2g} orbitals.
- Larger the value of Δ₀ is because of greater overlap between metal and ligand orbitals, it explains stronger covalent character of metal-ligand bond.

Energy level diagram of [CoF₆]³⁻ ion

In $[CoF_6]^{3-}$ ion, Co is present as Co^{+3} ($3d^6 4s^0 4p^0$). This complex ion has 12 electrons from six F⁻ ligands and 6 electrons from d-orbitals of Co^{+3} ion. The distribution of 18 electrons accommodates in various orbitals can be written as :

Fig: Molecular orbital energy level diagram of [CoF₆]³⁻

Important point from the figure:

- Total number of unpaired electron (n) present in t_{2g} orbitals and e_{g}^{*} ABMOs is equal to 2+2 = 4. Thus $[CoF_{6}]^{3-}$ is paramagnetic.
- Since n = 4, S = 4/2 = 2
- The energy gap (Δ_0) between t_{2g} and e_g^* orbitals is 13000 cm⁻¹ which is less than the pairing energy, P (= 19,000 cm⁻¹).Smaller the value of Δ_0 means lesser extent of overlap between metal and ligand orbitals.